Table 6. Observed and calculated relative intensities for 10.1 reflexions of polytype $20 \mathrm{H}_{3}$

l	Observed intensity*	Calculated intensity	l	Observed intensity*	Calculated intensity	Further observed relation between
0	at		21		8	intensities
1	$\stackrel{a \dagger}{a \dagger}$	0	22	${ }_{w}^{\text {m }}$ w	7	
2	$a \dagger$	0	23	vw	6	
3	$a \dagger$	0	24	a	6	
4	a	1	25	a	5	
5	a	2	26	a	4	$15 \simeq 16 \simeq 17 \simeq 18$
6	a	3	27	a	4	$12 \simeq 13 \simeq 14 \simeq 19 \simeq 21$
7	vvw	4	28	a	3	$15>14$
8	vvw	4	29	a	3	$21>22>23$
9	vvw	5	30	(s)	274	
10	$(v s) \S$	100	31	\ddagger	2	
11	${ }^{\boldsymbol{w}}$	7	32	\ddagger	1	
12	$m w$	8	33	\ddagger	1	
13	$m w$	8	34	\ddagger	0	
14	$m w$	8	35	\ddagger	0	
15	$m s$	9	36	\pm	0	
16	$m s$	9	37	\ddagger	0	
17	$m s$	9	38	\ddagger	0	
18	$m s$	9	39	\ddagger	0	
19	$m w$	8	40	\ddagger	0	
20	(vs)	206				
Table $1(n=20)$. See Table 1.						
flexions in parentheses could not be well-resolved owing to their overlapping with the 2 H spots.						

We gratefully acknowledge the helpful cooperation received from Dr V. K. Agrawal and Mr Gyaneswar of this laboratory. One of us (GL) is indebted to the University Grants Commission, India, for the award of a Junior Research Fellowship.

References

Agrawal, V. K. \& Trigunayat, G. C. (1969). Acta Cryst. A25, 401, 407.

Agrawal, V. K., Chadha, G. K. \& Trigunayat, G. C. (1970). Acta Cryst. A26, 140.

Chadha, G. K. \& Trigunayat, G. C. (1967). Acta Cryst. 23, 726.
Jagodzinski, H. (1954). Acta Cryst. 7, 300.
Jeffery, J. W. \& Murty, T. S. (1962). Nature, Lond. 193, 1172.

Mitchell, R. S. (1956). Z. Kristallogr. 108, 296.
Trigunayat, G. C. \& Chadha, G. K. (1971). Phys. stat. sol. (a), 4, 9.

The Crystal and Molecular Structure of Bismuth Trichloride

By S. C. Nyburg, G. A. Ozin and J. T. Szymański
Lash Miller Chemical Laboratories, University of Toronto, Toronto 181, Ontario, Canada

(Received 12 March 1971)
The crystal structure of bismuth trichloride has been determined. Three-dimensional data were collected on a four-circle diffractometer using Mo $K \alpha$ radiation. The space group is $P n 2_{1} a$ with orthorhombic cell $a=7.641$ (2),$b=9 \cdot 172$ (7), $c=6 \cdot 291$ (2) \AA. The final residual for the 935 observations is 4.43%. The molecular structure consists of a bismuth atom closely associated with three chlorine atoms in the shape of distorted trigonal pyramid and with five other chlorine atoms at bridging distances. The geometry of this eightfold coordination is best described as a trigonal prism with six chlorine atoms at its corners, and with two more chlorine atoms in face-bridging positions. The three close $\mathrm{Bi}-\mathrm{Cl}$ distances are $2.468,2.513$ and $2.518 \AA$; distances to the bridging chlorines range from 3.216 to 3.450 Å.

Introduction

Examination of the gas-phase Raman spectra of some Group VA trihalides (Denchik, Nyburg, Ozin \& Szy-
mański, 1971) revealed significant differences between the spectra of antimony and bismuth trichloride. The spectrum of the latter shows modes that were interpreted as being due to strong chlorine bridging. The
then-existing X-ray structural information for bismuth trichloride was based on powder diagrams, interpreted in terms of cubic-crystal symmetry (Wollen \& Mayer, 1958). Therefore, a complete X-ray investigation was undertaken to determine the precise molecular geometry and, hence, allow a detailed interpretation of the spectrum.

Experimental

Crystals of bismuth trichloride were grown by slow vacuum sublimation. One such crystal was mounted in a Lindemann capillary tube and was used for all subsequent X-ray examinations. The crystal was tabular (101), with forms $\{10 \overline{1}\}$ and $\{110\}$. Dimensions were 0.37 mm (along b), 0.17 mm wide and 0.08 mm thick.

Data collection

The crystal was mounted about [010] and [110], and $h 0 l$ and $h h l$ Weissenberg photographs were taken using $\mathrm{Cu} K \alpha$ radiation $\left(K \alpha_{1}=1.54051, K \alpha_{2}=1.54433 \AA\right.$). A total of 67 h 0 l and $h h l$ reflexions in the $47^{\circ}<\theta<83^{\circ}$, range was used to refine the cell parameters, utilizing a least-squares procedure that included corrections for absorption and eccentricity (Buerger, 1942). The uncertainties quoted are three times the standard deviations obtained from the least-squares matrix.

The same crystal was mounted about the b axis, and the intensity data were collected on a Picker four-circle diffractometer, using Mo $K \alpha$ radiation, and $\theta-2 \theta$ scan. The scan rate was $1^{\circ} / \mathrm{min}$ for a peak base width of 2°, and an 80 sec total background count. The large size and tabular shape of the crystal resulted in $0 k 0 \varphi$ sweeps having very large variations in intensity (as much as $30: 1$ for the 020 reflexion). Accordingly, φ was restricted to a 90° range where this variation was $2 \cdot 5: 1$ at most. This latter variation could be corrected to within 10% by Gaussian integration for absorption (Coppens, 1970), using a grid $24 \times 32 \times 16(=12288$ points). Because of the restriction we imposed on crystal orientation, data collection was confined to the oc-
tant suffering least from absorption, in particular, the very severe absorption that would have resulted from [010] lying close to the direct, or to the diffracted, beam was not encountered. The usual data reduction was carried out. Reflexions were considered observed if the intensity $I>2 \sigma(I)$. Counting statistics and an Abrahams factor (Abrahams \& Bernstein, 1965) of $c=$ 0.004 were used to evaluate $\sigma(I)$. A total of 935 intensities were observed, and these were used to solve and refine the structure.

Structure analysis

The structure was solved from the Patterson function by routine application of the heavy-atom method; it was refined initially in the centrosymmetric space group Pnma, to conform to the known structures of SbCl_{3} (Lindqvist \& Niggli, 1956) and $\beta-\mathrm{SbBr}_{3}$ (Cushen \& Hulme, 1962). The final conventional residual R was 4.67%. The scattering curves used were those for Bi° and Cl^{0}, evaluated from Hartree-Fock wave functions, using coefficients given by Cromer \& Mann (1968). For the three chlorine atoms and for bismuth, the real and imaginary parts of the anomalous scattering corrections were applied: for $\mathrm{Cl}: 0 \cdot 1,0 \cdot 2 \mathrm{e}$; for $\mathrm{Bi}:-4 \cdot 5,11 \cdot 7 \mathrm{e}$ (International Tables for X -ray Crystallography, 1962).
In space group Pnma four molecules must have either m or $\overline{1}$ symmetry. The latter, however, is not possible (in the absence of disorder) for a molecule $A X_{3}$. Hence, four Bi atoms and four Cl atoms per cell must lie on mirror planes. The non-centric space group $P n 2_{1} a$ does not require any molecular symmetry. As the correct space group cannot be uniquely determined from the systematic absences, the restrictions on molecular symmetry were relaxed; further structure refinement was then attempted in space group $P n 2_{1} a$, for which initial atomic coordinates were those obtained from the centrosymmetric refinement. The structure refined to a final conventional residual of $4 \cdot 43 \%$. Because of the significant anomalous scattering for Cl and Bi , another set of atomic coordinates, related to the

Fig. 1. (a) Bismuth trichloride molecule, showing bond lengths and angles for the bonded chlorine atoms. The diagram is drawn viewed normal to the plane of the three chlorine atoms, with bismuth above the plane. (b) Irregular pentagonal cap of five bridging chlorine atoms, showing bond lengths, and angles for adjacent atoms. The diagram is drawn in the same orientation as (a). All five chlorine atoms are above the bismuth atom. Thermal ellipsoids are scaled to include 75% probability.
non-centric set by $\overline{\mathrm{I}}$ at the origin, was also tried to see which set gave better agreement and, hence, which is the absolute configuration of the molecule in the crystal examined. The residual for this second set was 4.52%. Results of the structure determination given here are based, therefore, on the non-centric set of parameters at $R=4 \cdot 43 \%$.

Crystal data

Crystal system, orthorhombic.
$a=7.641$ (2), $b=9 \cdot 172$ (7), $c=6 \cdot 291$ (2) \AA.
Cell volume $=440 \cdot 9 \pm 0 \cdot 6 \AA^{3}$, F.W. $=315 \cdot 34$.
$D_{c}=4.75 \mathrm{g.cm}{ }^{-3}$, for $Z=4$.
$D_{\text {obs }}=4.75 \mathrm{g.cm}^{-3}$
(Handbook of Chemistry and Physics, 1967).
Linear absorption coefficient, $\mu(\mathrm{Mo} \mathrm{K} \alpha)=396 \mathrm{~cm}^{-1}$.
Systematic absences: $0 k l, k+l=2 n+1$,

$$
h k 0, h=2 n+1 .
$$

Spacegroup: Pnma or $P n 2_{1} a$ (from systematic absences), $P n 2_{1} a$ (from structure analysis).

Space-group ambiguity

Recently, some structures, in which space-group ambiguity (centric $v s$. non-centric models) has led to important molecular differences in the two models (Parthasarathy, Sime \& Speakman, 1969; Choi \& Boutin, 1968; Leung \& Nyburg, 1969), have been published.

Usually, two criteria are applied to decide which model is correct: (1) the Hamilton \mathscr{R} test (Hamilton, 1965) is applied to determine the significance level of the difference, (2) even if the Hamilton test is indicative of one particular model, the model that makes more chemical sense in its bond lengths, angles, and symmetry is chosen as the correct one. Frequently, the difference between the models is so gross, that there is no difficulty of choice.

Fig. 2. Right triangular prism of chlorine atoms, which give eightfold coordination of bismuth. Pseudo mirror plane is indicated by broken line.

A further indication of the incorrectness of a given model is that the least-squares refinement is ill-conditioned, the standard deviations are large, and the shifts are erratic. The difficulty arises in applying the

Fig. 3. Projection of the structure on the $a b$ plane, showing the chlorine bridging that is present between a single BiCl_{3} molecule and its neighbours. Two unit cells in the z direction are involved.
second criterion, when both models are chemically reasonable; yet there are apparently significant differences between them. It appears, then, that the only choice is to use the Hamilton test.

In the present structure, the two models resulting from the analysis in the centric and non-centric space groups are very similar, and both are chemically reasonable. The refinement in the non-centric case progressed somewhat slowly, presumably because of very strong correlations between parameters; but the shifts were always in the same direction (there being no oscillation), and the standard deviations are reasonable. Thus, the second criterion (above) cannot be applied to rule out one model or the other, and statistical analysis must be used.

The number of varied parameters in the two noncentric models is the same, so that the improvement from 0.0452 to 0.0443 in R is significant. The question, however, remains: Is the improvement in the residual from 0.0467 to 0.0443 (weighted R 's $0.0589,0.0556$) significant when the number of observations is 935 ? Application of the Hamilton \mathscr{R} test indicates the expected ratio of weighted R 's, for an increase of 14 in the number of variables, is 1.018 at the $\frac{1}{2} \%$ significance level. The observed ratio is $1 \cdot 059$, indicating that the improvement is very significant, and that the correct space group is $P n 2_{1} a$. Use of the ratio test assumes that systematic errors are not important. The only source of concern in the present case might be the absorption corrections. However, we are satisfied in our own minds that these have been carried out as accurately as possible, and they should not invalidate our conclusions.

Table 2. Bond lengths and angles
(a) Bond lengths (e.s.d.'s in parentheses):

$\mathrm{Bi}-\mathrm{Cl}(1)$		$2 \cdot 468$ (4) Å
$\mathrm{Bi}-\mathrm{Cl}(2)$		$2 \cdot 513$ (7)
$\mathrm{Bi}-\mathrm{Cl}(3)$		$2 \cdot 518$ (7)
$\mathrm{Bi} \cdot \cdots \mathrm{Cl}\left(1^{\prime}\right)$	($\left.\frac{1}{2}+x, \quad y,-\frac{1}{2}-z\right)$	$3 \cdot 224$ (3)
$\mathrm{Bi} \cdot \cdots \mathrm{Cl}\left(2^{\prime}\right)$	$\left(-\frac{1}{2}+x, \quad y,-\frac{1}{2}+z\right)$	3.450 (9)
$\mathrm{Bi} \cdots \mathrm{Cl}\left(2^{\prime \prime}\right)$	($\left.-x, \frac{1}{2}+y,-z\right)$	$3 \cdot 216$ (9)
$\mathrm{Bi} \cdot \cdots \mathrm{Cl}\left(3^{\prime}\right)$	$\left(-\frac{1}{2}+x, \quad y,-\frac{1}{2}+z\right)$	3.398 (8)
$\mathrm{Bi} \cdots \mathrm{Cl}\left(3^{\prime \prime}\right)$	($-x, \frac{1}{2}+y,-z$)	$3 \cdot 256$ (9)

(b) Bond angles around bismuth (${ }^{\circ}$) with e.s.d.'s in parentheses.

	$\mathrm{Cl}(2)$	$\mathrm{Cl}(3)$	$\mathrm{Cl}\left(1^{\prime}\right)$	$\mathrm{Cl}\left(2^{\prime}\right)$	$\mathrm{Cl}\left(3^{\prime}\right)$	$\mathrm{Cl}\left(2^{\prime \prime}\right)$	$\mathrm{Cl}\left(3^{\prime \prime}\right)$
$\mathrm{Cl}(1)$	$93 \cdot 2(3)$	$94 \cdot 9(3)$	$88.72(6)$	$141 \cdot 4(3)$	$140 \cdot 4(3)$	$78 \cdot 3(4)$	$7772(4)$
$\mathrm{Cl}(2)$	-	$88 \cdot 45(14)$	$137 \cdot 4(3)$	$84 \cdot 6(2)$	$125 \cdot 8(4)$	$155 \cdot 0(2)$	$72 \cdot 4(2)$
$\mathrm{Cl}(3)$		-	$137 \cdot 8(3)$	$123 \cdot 0(4)$	$84 \cdot 2(2)$	$73 \cdot 1(2)$	$154 \cdot 9(2)$
$\mathrm{Cl}\left(1^{\prime}\right)$			-	$68 \cdot 6(2)$	$67 \cdot 5(2)$	$66 \cdot 5(3)$	$66 \cdot 6(3)$
$\mathrm{Cl}\left(2^{\prime}\right)$			-	$59 \cdot 17(9)$	$116 \cdot 65(14)$	$65 \cdot 4(3)$	
$\mathrm{Cl}\left(3^{\prime}\right)$				-	$63 \cdot 5(3)$	$117 \cdot 13(13)$	
$\mathrm{Cl}\left(2^{\prime \prime}\right)$					-	$127 \cdot 01(9)$	

(c) Bond angles around bridging chlorine atoms $\left({ }^{\circ}\right)$:

Description of structure

The structure consists of BiCl_{3} molecules. Each bismuth atom is strongly bonded to three chlorine atoms, and the molecule has a distorted trigonal pyramidal shape. Atomic fractional coordinates and thermal parameters are listed in Table 1. Bond lengths and angles are given in Fig. $1(a)$ and Table 2. Observed and calculated structure factors are listed in Table 3.

Bond lengths $\mathrm{Bi}-\mathrm{Cl}(2)$ and $\mathrm{Bi}-\mathrm{Cl}(3)$ are equal to within one standard deviation: $2 \cdot 513$ (7) and $2 \cdot 518$ (7) \AA; the third bond, $\mathrm{Bi}-\mathrm{Cl}(1)$, is much shorter: $2 \cdot 468$ (3) \AA. There is no molecular symmetry as far as bond angles are concerned. The two angles opposite the equal $\mathrm{Bi}-\mathrm{Cl}$ bonds are comparable, but not equal: 94.9 (3) and $93.2(3)^{\circ}$; the third angle, the one opposite the shortest $\mathrm{Bi}-\mathrm{Cl}$ bond, is much smaller: 84.45 (14) ${ }^{\circ}$.

A non-bonded bismuth-chlorine contact is probably about $4 \cdot 1 \AA$ (Pauling, 1960), and distances much less than this value can be considered as bonding or as bridging. In addition to the three bonded chlorine
atoms around bismuth, five more chlorine atoms exist at distances between 3.216 (9) and 3.450 (9) \AA on the side of bismuth opposite to the three bonded chlorine atoms [Fig. $1(b)$]. This eightfold coordination is best described as a right trigonal prism, with two additional chlorine atoms in face-bridging positions (Fig. 2). Atoms $\mathrm{Cl}(1), \mathrm{Cl}(2)$, and $\mathrm{Cl}(3)$, closely bonded to bismuth, form the base of the prism. Atoms $\mathrm{Cl}\left(1^{\prime}\right), \mathrm{Cl}\left(2^{\prime}\right)$, and $\mathrm{Cl}\left(3^{\prime}\right)$ lie in a plane that is virtually parallel to the base and vertically above their unprimed counterparts. Thus, three rectangular sides are formed. Atoms $\mathrm{Cl}\left(2^{\prime \prime}\right)$ and $\mathrm{Cl}\left(3^{\prime \prime}\right)$ lie in the middle of two of these sides. Also, a pseudo mirror plane relates $\mathrm{Cl}(2)$ to $\mathrm{Cl}(3), \mathrm{Cl}\left(2^{\prime}\right)$ to $\mathrm{Cl}\left(3^{\prime}\right)$, and $\mathrm{Cl}\left(2^{\prime \prime}\right)$ to $\mathrm{Cl}\left(3^{\prime \prime}\right)$. The bismuth atom is not in the centre of the prism, but is much nearer the three bonded chlorine atoms at the base.

Thus, the structure is related to that of PbCl_{2} where a trigonal prism coordination is observed, but with all three face-bridging positions (on the rectangular faces) being filled (Sahl \& Zemann, 1961). An overall projec-

Table 3. Observed and calculated structure factors
The values represent the index $l, 10 \times F_{o}$ and $10 \times\left|F_{c}\right|$.

tion of the unit cell on the $a b$ plane, showing the way in which bridging occurs around a single BiCl_{3} molecule, is given in Fig. 3. The $\mathrm{Bi}-\mathrm{Cl}$ bond length, and the number of bridging bonds in which the given chlorine is involved, correlate. Bond length $\mathrm{Bi}-\mathrm{Cl}(1)$ is the shortest of the three; $\mathrm{Cl}(1)$ is involved in bridging to only one other bismuth atom. The two chlorine atoms involved in the longer $\mathrm{Bi}-\mathrm{Cl}$ bonds each take part in bridging to two other bismuth atoms. In each case, the three bismuth atoms and the bridging chlorine atom are nearly coplanar; the sum of the $\mathrm{Bi}-\mathrm{Cl} \cdots \mathrm{Bi}$ angles is 358.7° around $\mathrm{Cl}(2)$ and 359.4° around $\mathrm{Cl}(3)$.

Comparison with other Group V trihalide structures

A structure of antimony trichloride has been proposed (Lindqvist \& Niggli, 1956) in which it is assigned to orthorhombic centrosymmetric space group Pbnm rather than to the non-centric $P b n 2_{1}$. (These are equivalent to Pnma and $P n 2_{1} a$ with interchange of axes.) The centrosymmetric space group was selected because, with the rather limited refinement used (difference Fourier techniques) and resulting large estimated standard deviations, the two symmetries could not be distinguished.
β-Antimony tribromide appears to be isostructural with antimony trichloride (Cushen \& Hulme, 1962). Again, it was reported that the centric space group

Fig. 4. Proposed triangular prism model for group VA trihalides, showing bonding distances, bridging distances (in parentheses), and the nearest non-bonded halogen (in square brackets). (a) SbCl_{3}, space group Pbnm. (b) $\alpha-\mathrm{SbBr}_{3}$, space group $P 2_{1} 2_{1} 2_{1}$. (c) $\beta-\mathrm{SbBr}_{3}$, space group Pbnm. (d) BiCl_{3}, space group $P n 2_{1} a$, (present structure).
was the correct choice, based on a statistical $N(z)$ test of the projection data used for structure determination. Our analysis, however, supports a non-centric structure for bismuth trichloride.

The differences between the structure proposed here and that obtained by using the higher symmetry of Pnma, are small but significant. Because of the relaxation in symmetry, some changes occur in bond lengths and angles. However, the main difference appears to be that the bismuth trichloride molecule is rotated roughly 1.3° about its approximate threefold axis. Consequently, $\mathrm{Cl}(2)$ and $\mathrm{Cl}(3)$ are each displaced in the z direction from the Pnma position by about $\pm 0.06 \AA$. In all cases, the mean of the appropriate $\mathrm{Cl}(2)$ and $\mathrm{Cl}(3)$ atomic coordinates in $\mathrm{Pn}_{1} a$ is within $0 \cdot 5 \sigma$ of the Pnma position. Apparently, then, such differences, if they exist in $\beta-\mathrm{SbBr}_{3}$ and SbCl_{3}, are too small to have been detected by the techniques used, and the structure of these molecules should be re-examined.

Note that $\alpha-\mathrm{SbBr}_{3}$ does crystallize in a non-centric space group ($P 2_{1} 2_{1} 2_{1}$, Cushen \& Hulme, 1963), where there is no question of space-group ambiguity and no restriction on site symmetry. Therefore, there seems to be no reason why the site symmetry of the other trihalides should be such as to require the centric space group.

A comparison of the cell dimensions of SbCl_{3} and BiCl_{3} indicates that a considerable shrinking of the cell has occurred in the present structure $\left(\mathrm{SbCl}_{3}: 8 \cdot 12\right.$, $9 \cdot 47,6 \cdot 37$, e.s.d.'s unknown; $\mathrm{BiCl}_{3}: 7 \cdot 641,9 \cdot 172$, $6 \cdot 291$). This contrasts with the expansion that would be expected to accommodate the larger bismuth covalent and van der Waals radii. The strong bridging $\mathrm{Cl}-\mathrm{Bi}$ action appears to be responsible for this cell shrinkage in the bismuth trichloride structure. However, since the two compounds appear to be isostructural, we might well conclude that the observed $\mathrm{Sb} \cdots \mathrm{Cl}$ distances of $3 \cdot 5 \AA$, previously ruled out (Lindqvist \& Niggli, 1956) as 'long distances', in fact are very weak bridging interactions (the sum of the van der Waals radii for antimony and chlorine is $4.0 \AA$). Examination of solid SbCl_{3}, using laser Raman spectroscopy (Denchik et al., 1971), has not revealed any bridging vibration modes for chlorine atoms; but again, this may be a result of the very weakness of such an interaction. Solid BiCl_{3} shows clear indication of bridging-mode vibration for the chlorine atoms.

Since halide bridging has clearly been established in this structure, we feel confident that it is possible to reinterpret some of the known structures of Group VA trihalides in terms of the trigonal prismatic model.

Fig. 4 shows three antimony trihalide structures and the structure of bismuth trichloride. In all cases, three halogen atoms are clearly bonded, five appear as bridging, and one (the third face-bridging position) is at a van der Waals distance from the central atom. It is located in the middle of this third face, in the depression formed between the four halogen atoms defining the face.

We thank Dr W. C. Hamilton for helpful comments and discussion on the question of space-group ambiguity. We also acknowledge the help of Miss E. Denchik for growing the crystal used in the analysis. Figs. 1 and 3 were prepared using computer program ORTEP (Johnson, 1965). The full-matrix least-squares program used in the refinement of the structure was $X F L S$ (Ellison, unpublished). Standard deviations of bond lengths and angles were calculated with program ORFFE (Busing, Martin \& Levy, 1962).
Receipt of a grant from the National Research Council of Canada is gratefully acknowledged.

References

Abrahams, S. C. \& Bernstein, J. L. (1965). Acta Cryst. 18, 926.

Buerger, M. J. (1942). X-ray Crystallography. New York: John Wiley.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). Report ORNL-TM-306. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Choi, C. S. \& Boutin, H. (1968). J. Chem. Phys. 48, 1397. Coppens, P. (1970). DATAP3, a Single Crystal X-ray Absorption Correction Program. In Crystallographic Computing. Copenhagen: Munksgaard.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321.
Cushen, D. W. \& Hulme, R. (1962). J. Chem. Soc. p. 2218.
Cushen, D. W. \& Hulme, R. (1964). J. Chem. Soc. p. 4162.
Denchik, E., Nyburg, S.. C., Ozin, G. A. \& Szymański, J. T. (1971). J. Chem. Soc. In the press.

Ellison, R. D., XFLT, an Extensively Modified Version of ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee. Unpublished.
Hamilton, W. C. (1965). Acta Cryst. 18, 502.
Handbook of Chemistry and Physics (1967). 48th edition, p. B-159. The Chemical Rubber Company, Cleveland, Ohio.
International Tables for X-ray Crystallography (1962). Vol. III, p. 215, 216. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP, a Fortran ThermalEllipsoid Plot Program for Crystal Structure Illustrations. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Leung, F. \& Nyburg, S. C. (1969). Chem. Commum. p. 137.
Lindqvist, I. \& Niggli, A. (1956). J. Inorg. Nucl. Chem., 2, 345.

Parthasarathy, R., Sime, J. G. \& Speakman, J. C. (1969). Acta Cryst. B25, 1201.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
Sahl, K. \& Zemann, J. (1961). Naturwissenschaften, 48, 641. Wolten, C. M. \& Mayer, S. W. (1958). U. S. Atomic Energy Commission Report NAA-SR-2939, and Acta Cryst. 11, 739.

The Crystal and Molecular Structure of $[\mathrm{Co}(\mathrm{QP}) \mathrm{Cl}] \mathrm{BPh}_{4}$ QP=tris(o-diphenylphosphinophenyl)phosphine)

By T. L. Blundell* and H. M. Powell
Chemical Crystallography Laboratory, South Parks Road, Oxford OX1 3QS, England

(Received 27 July 1970 and in revised form 29 December 1970)
The crystal and molecular structure of $[\mathrm{Co}(\mathrm{QP}) \mathrm{Cl}] \mathrm{BPh}_{4}[\mathrm{QP}=$ tris $(o$-diphenylphosphinophenyl) phosphine] is reported. The compound crystallizes in space group $P 2_{1} n b, a=18.85 \pm 0.02, b=18.25 \pm 0.02$, $c=18.60 \pm 0.02 \AA$. The X-ray analysis, involving the use of anomalous scattering techniques in the solution of the phase problem, has shown the cation to have a distorted trigonal bipyramidal coordination of the cobalt in a $[\mathrm{Co}(\mathrm{QP}) \mathrm{Cl}]^{+}$ion. Although the ligand can have trigonal symmetry, there is a large distortion from threefold axial symmetry, giving an equatorial angle of $137 \cdot 2^{\circ}$. Arguments are presented to show that this may be a Jahn-Teller effect. The angles between the equatorial and the axial cobalt-phosphorus bonds are $86.5 \pm 0 \cdot 6^{\circ}$, and the axial cobalt-phosphorus bond length, $2.057 \AA$, is significantly shorter than the equatorial bond lengths of $2.261,2.280$ and $2.318 \AA$. There are many van der Waals contacts between phenyl groups of the QP ligand and between these and the axial chlorine atom.

Introduction

Although the results of many X-ray crystal structure analyses are now available for pentacoordinate complexes, the stereochemical problem has not yet been fully resolved.

[^0]Early theoretical work of Pauling (1939), Daudel \& Bucher (1945) and Linnett \& Mellish (1954) for instance, gave conflicting predictions about the relative stabilities of the two ideal geometries, the trigonal bipyramid and the square pyramid. It has other shortcomings. Even when different approaches predict the same preferred stereochemistry, the characterization of the bonding is different; the theories often predict the wrong relative strengths for the equatorial and apical

[^0]: * Present address: Laboratory of Molecular Biophysics, South Parks Road, Oxford, England.

